Four-bar linkage modelling in teleost pharyngeal jaws: computer simulations of bite kinetics.
نویسندگان
چکیده
The pharyngeal arches of the red drum (Sciaenops ocellatus) possess large toothplates and a complex musculoskeletal design for biting and crushing hard prey. The morphology of the pharyngeal apparatus is described from dissections of six specimens, with a focus on the geometric conformation of contractile and rotational elements. Four major muscles operate the rotational 4th epibranchial (EB4) and 3rd pharyngobranchial (PB3) elements to create pharyngeal bite force, including the levator posterior (LP), levator externus 3/4 (LE), obliquus posterior (OP) and 3rd obliquus dorsalis (OD). A biomechanical model of upper pharyngeal jaw biting is developed using lever mechanics and four-bar linkage theory from mechanical engineering. A pharyngeal four-bar linkage is proposed that involves the posterior skull as the fixed link, the LP muscle as input link, the epibranchial bone as coupler link and the toothed pharyngobranchial as output link. We used a computer model to simulate contraction of the four major muscles, with the LP as the dominant muscle, the length of which determined the position of the linkage. When modelling lever mechanics, we found that the effective mechanical advantages of the pharyngeal elements were low, resulting in little resultant bite force. By contrast, the force advantage of the four-bar linkage was relatively high, transmitting approximately 50% of the total muscle force to the bite between the toothplates. Pharyngeal linkage modelling enables quantitative functional morphometry of a key component of the fish feeding system, and the model is now available for ontogenetic and comparative analyses of fishes with pharyngeal linkage mechanisms.
منابع مشابه
Feeding mechanics and bite force modelling of the skull of Dunkleosteus terrelli, an ancient apex predator.
Placoderms are a diverse group of armoured fishes that dominated the aquatic ecosystems of the Devonian Period, 415-360 million years ago. The bladed jaws of predators such as Dunkleosteus suggest that these animals were the first vertebrates to use rapid mouth opening and a powerful bite to capture and fragment evasive prey items prior to ingestion. Here, we develop a biomechanical model of fo...
متن کاملEvolution of Levers and Linkages in the Feeding Mechanisms of Fishes1
SYNOPSIS. The evolution of feeding mechanisms in the ray-finned fishes (Actinopterygii) is a compelling example of transformation in a musculoskeletal complex involving multiple skeletal elements and numerous muscles that power skull motion. Biomechanical models of jaw force and skull kinetics aid our understanding of these complex systems and enable broad comparison of feeding mechanics across...
متن کاملDynamic Behavior Analysis of a Planar Four-bar Linkage with Multiple Clearances Joint
In practice, clearances in the joints are inevitable due to tolerances, and defects arising from design and manufacturing. In the presence of clearance at a joint, a mechanism gains some additional, uncontrollable degrees of freedom which are the source of error. Moreover, joints undergo wear and backlashes and so cannot be used in precision mechanisms. In this study, the dynamic behaviour of ...
متن کاملNonlinear dynamic analysis of a four-bar mechanism having revolute joint with clearance
In general, joints are assumed without clearance in the dynamic analysis of multi-body echanical systems. When joint clearance is considered, the mechanism obtains two uncontrollable degrees of freedom and hence the dynamic response considerably changes. The joints’ clearances are the main sources of vibrations and noise due to the impact of the coupling parts in the joints. Therefore, the syst...
متن کاملEvolution of levers and linkages in the feeding mechanisms of fishes.
The evolution of feeding mechanisms in the ray-finned fishes (Actinopterygii) is a compelling example of transformation in a musculoskeletal complex involving multiple skeletal elements and numerous muscles that power skull motion. Biomechanical models of jaw force and skull kinetics aid our understanding of these complex systems and enable broad comparison of feeding mechanics across taxa. Mec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of anatomy
دوره 209 1 شماره
صفحات -
تاریخ انتشار 2006